Adp Ribosylation Factor-like Protein 2 (Arl2) Regulates the Interaction of Tubulin-Folding Cofactor D with Native Tubulin

نویسندگان

  • Arunashree Bhamidipati
  • Sally A. Lewis
  • Nicholas J. Cowan
چکیده

The ADP ribosylation factor-like proteins (Arls) are a family of small monomeric G proteins of unknown function. Here, we show that Arl2 interacts with the tubulin-specific chaperone protein known as cofactor D. Cofactors C, D, and E assemble the alpha/beta- tubulin heterodimer and also interact with native tubulin, stimulating it to hydrolyze GTP and thus acting together as a beta-tubulin GTPase activating protein (GAP). We find that Arl2 downregulates the tubulin GAP activity of C, D, and E, and inhibits the binding of D to native tubulin in vitro. We also find that overexpression of cofactors D or E in cultured cells results in the destruction of the tubulin heterodimer and of microtubules. Arl2 specifically prevents destruction of tubulin and microtubules by cofactor D, but not by cofactor E. We generated mutant forms of Arl2 based on the known properties of classical Ras-family mutations. Experiments using these altered forms of Arl2 in vitro and in vivo demonstrate that it is GDP-bound Arl2 that interacts with cofactor D, thereby averting tubulin and microtubule destruction. These data establish a role for Arl2 in modulating the interaction of tubulin-folding cofactors with native tubulin in vivo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arl2- and Msps-dependent microtubule growth governs asymmetric division

Asymmetric division of neural stem cells is a fundamental strategy to balance their self-renewal and differentiation. It is long thought that microtubules are not essential for cell polarity in asymmetrically dividing Drosophila melanogaster neuroblasts (NBs; neural stem cells). Here, we show that Drosophila ADP ribosylation factor like-2 (Arl2) and Msps, a known microtubule-binding protein, co...

متن کامل

Revisiting the tubulin cofactors and Arl2 in the regulation of soluble αβ-tubulin pools and their effect on microtubule dynamics

Soluble αβ-tubulin heterodimers are maintained at high concentration inside eukaryotic cells, forming pools that fundamentally drive microtubule dynamics. Five conserved tubulin cofactors and ADP ribosylation factor-like 2 regulate the biogenesis and degradation of αβ-tubulins to maintain concentrated soluble pools. Here I describe a revised model for the function of three tubulin cofactors and...

متن کامل

Tubulin cofactors and Arl2 are cage-like chaperones that regulate the soluble αβ-tubulin pool for microtubule dynamics

Microtubule dynamics and polarity stem from the polymerization of αβ-tubulin heterodimers. Five conserved tubulin cofactors/chaperones and the Arl2 GTPase regulate α- and β-tubulin assembly into heterodimers and maintain the soluble tubulin pool in the cytoplasm, but their physical mechanisms are unknown. Here, we reconstitute a core tubulin chaperone consisting of tubulin cofactors TBCD, TBCE,...

متن کامل

The dual role of fission yeast Tbc1/cofactor C orchestrates microtubule homeostasis in tubulin folding and acts as a GAP for GTPase Alp41/Arl2

Supplying the appropriate amount of correctly folded α/β-tubulin heterodimers is critical for microtubule dynamics. Formation of assembly-competent heterodimers is remarkably elaborate at the molecular level, in which the α- and β-tubulins are separately processed in a chaperone-dependent manner. This sequential step is performed by the tubulin-folding cofactor pathway, comprising a specific se...

متن کامل

Tubulin Subunits Exist in an Activated Conformational State Generated and Maintained by Protein Cofactors

The production of native alpha/beta tubulin heterodimer in vitro depends on the action of cytosolic chaperonin and several protein cofactors. We previously showed that four such cofactors (termed A, C, D, and E) together with native tubulin act on beta-tubulin folding intermediates generated by the chaperonin to produce polymerizable tubulin heterodimers. However, this set of cofactors generate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 149  شماره 

صفحات  -

تاریخ انتشار 2000